skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Matthews, E"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Context. A low-mass companion potentially in the brown dwarf mass regime was discovered on a ~12 yr orbit (~5.5 au) around HD 167665 using radial velocity (RV) monitoring. Joint RV–astrometry analyses confirmed that HD 167665B is a brown dwarf with precisions on the measured mass of ~4–9%. Brown dwarf companions with measured mass and luminosity are valuable for testing formation and evolutionary models. However, its atmospheric properties and luminosity are still unconstrained, preventing detailed tests of evolutionary models. Aims. We further characterize the HD 167665 system by measuring the luminosity and refining the mass of its companion and reassessing the stellar age. Methods. We present new high-contrast imaging data of the star and of its close-in environment from SPHERE and GRAVITY, which we combined with RV data from CORALIE and HIRES and astrometry from HIPPARCOSandGaia. Results. The analysis of the host star properties indicates an age of 6.20 ± 1.13 Gyr. GRAVITY reveals a point source near the position predicted from a joint fit of RV data and HIPPARCOS–Gaiaproper motion anomalies. Subsequent SPHERE imaging confirms the detection and reveals a faint point source of contrast of ∆H2= 10.95 ± 0.33 mag at a projected angular separation of ~180 mas. A joint fit of the high-contrast imaging, RV, and HIPPARCOSintermediate astrometric data together with theGaiaastrometric parameters constrains the mass of HD 167665B to ~1.2%, 60.3 ± 0.7MJ. The SPHERE colors and spectrum point to an early or mid-T brown dwarf of spectral type T4−2+1. Fitting the SPHERE spectrophotometry and GRAVITY spectrum with synthetic spectra suggests an effective temperature of ~1000–1150 K, a surface gravity of ~5.0–5.4 dex, and a bolometric luminosity log(L/L)=−4.892−0.028+0.024dex. The mass, luminosity, and age of the companion can only be reproduced within 3σby the hybrid cloudy evolutionary models of Saumon & Marley (2008, ApJ, 689, 1327), whereas cloudless evolutionary models underpredict its luminosity. 
    more » « less
  2. Planets with radii between that of the Earth and Neptune (hereafter referred to as `sub-Neptunes') are found in close-in orbits around more than half of all Sun-like stars1,2. However, their composition, formation and evolution remain poorly understood3. The study of multiplanetary systems offers an opportunity to investigate the outcomes of planet formation and evolution while controlling for initial conditions and environment. Those in resonance (with their orbital periods related by a ratio of small integers) are particularly valuable because they imply a system architecture practically unchanged since its birth. Here we present the observations of six transiting planets around the bright nearby star HD 110067. We find that the planets follow a chain of resonant orbits. A dynamical study of the innermost planet triplet allowed the prediction and later confirmation of the orbits of the rest of the planets in the system. The six planets are found to be sub-Neptunes with radii ranging from 1.94R⊕ to 2.85R⊕. Three of the planets have measured masses, yielding low bulk densities that suggest the presence of large hydrogen-dominated atmospheres. 
    more » « less
  3. We report the discovery of a Neptune-like planet (LP 714-47 b, P = 4.05204 d, m b = 30.8 ± 1.5 M ⊕ , R b = 4.7 ± 0.3 R ⊕ ) located in the “hot Neptune desert”. Confirmation of the TESS Object of Interest (TOI 442.01) was achieved with radial-velocity follow-up using CARMENES, ESPRESSO, HIRES, iSHELL, and PFS, as well as from photometric data using TESS, Spitzer , and ground-based photometry from MuSCAT2, TRAPPIST-South, MONET-South, the George Mason University telescope, the Las Cumbres Observatory Global Telescope network, the El Sauce telescope, the TÜBİTAK National Observatory, the University of Louisville Manner Telescope, and WASP-South. We also present high-spatial resolution adaptive optics imaging with the Gemini Near-Infrared Imager. The low uncertainties in the mass and radius determination place LP 714-47 b among physically well-characterised planets, allowing for a meaningful comparison with planet structure models. The host star LP 714-47 is a slowly rotating early M dwarf ( T eff = 3950 ± 51 K) with a mass of 0.59 ± 0.02 M ⊙ and a radius of 0.58 ± 0.02 R ⊙ . From long-term photometric monitoring and spectroscopic activity indicators, we determine a stellar rotation period of about 33 d. The stellar activity is also manifested as correlated noise in the radial-velocity data. In the power spectrum of the radial-velocity data, we detect a second signal with a period of 16 days in addition to the four-day signal of the planet. This could be shown to be a harmonic of the stellar rotation period or the signal of a second planet. It may be possible to tell the difference once more TESS data and radial-velocity data are obtained. 
    more » « less